22PH201 PHYSICS LABORATORY

R-2022 (Common to I Semester CSE, CSE(CS) & ADS)

L	Т	Р	С
3	0	2	4

COURSE OUTCOMES

On completion of this course, the students will be able to

- CO1: Discuss the basic principles of working of laser and their applications in fibre optic communication
- CO2: Summarize the classical and quantum electron theories and energy band structures
- CO3: Describe the conductivity in intrinsic and extrinsic semiconductors and importance of Hall Effect measurements
- CO4: Associate the properties of nanoscale materials and their applications in quantum computing
- CO5: Interpret the properties of magnetic and superconducting materials and their applications in computer data storage

List of Experiments:-

1.		D
	etermination of divergence of laser beam	
2.		D
	etermination of acceptance angle and numerical aperture of an optical fibre	
3.		D
	etermination of thermal conductivity of a bad conductor - Lee's disc method	
4.		Μ
	easurement of the internal resistance using potentiometer	
5.		B
	and-gap determination of intrinsic semiconductor	
6.		D
	etermination of wavelength of semiconductor laser	
7.		S
	ynthesis of nanoparticles by sol-gel method	

Q	
o	٠

9.

etermination of hysteresis loss B-H loop.

10.

D

etermination of magnetic susceptibility of a paramagnetic liquid using Quincke's apparatus.

REFERENCES:

- 1. R.P. Feynman, The Feynman Lectures on Physics Vol. II, The New Millennium Edition, 2012.
- 2. M.A.Wahab, Solid State Physics, 3rd Edition, Narosa Publishing House Pvt. Ltd., 2015.
- 3. B.Rogers, J. Adams and S.Pennathu, Nanotechnology: Understanding Small System, CRC Press, 2014.
- 4. C.P. Williams, Explorations in Quantum Computing, Springer-Verlag London, 2011.

S. No.	Description of Equipment	Quantity
1.	Semiconductor Laser	6 Nos.
2.	Determination of optical fibre parameters	6 Nos.
3.	Lee's disc apparatus	6 Nos.
4.	Potentiometer	6 Nos.
5.	Bandgap determination set up	6 Nos.
6.	Sol-gel synthesis	2 Nos.
7.	B-H loop set-up	5 Nos.
8.	Quincke's apparatus	2 Nos.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

D

D